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Bounds on the momentum transport by laminar or turbulent shear flows between two
parallel plates in constant relative motion in a rotating system are derived. The axis of
rotation is parallel to the plates. The dimensionless component of the rotation vector
perpendicular to the relative motion of the plate is denoted by the Coriolis number
7. Through the consideration of separate energy balances for the poloidal and the
toroidal components of the fluid velocity field a variational problem is formulated in
which t enters as a parameter. Bounds that are derived under the hypothesis that the
extremalizing vector fields are independent of the streamwise coordinate suggest that
no state of turbulent motion can exist for —2,/1708 = —Rep < Re < 1708/7 4+t with

T 2 +/1708.

1. Introduction

Most bounds on turbulent transport in systems of incompressible fluids are derived
independently of the property of a rotation of the system. This is because usually only
the energy balance for the turbulent velocity field enters the derivation of the bounds.
Because the Coriolis force does not do any work the parameter of rotation drops out
of the energy balance. Experimentally realized turbulent flows exhibit considerable
variations as a function of the rotation parameter, however, and improved bounds
incorporating the influence of rotation are thus highly desirable. A convenient way
in which the Coriolis force can be incorporated into an upper-bound analysis is the
consideration of energy balances for separate parts of the fluctuating velocity field. In
their derivation of a bound on the convective heat transport in a fluid layer heated
from below, cooled from above and rotating about a vertical axis Vitanov & Busse
(2001) used separate balances for the poloidal and toroidal components of the velocity
field. In this case the variational problem for the determination of the upper bound
had to be solved numerically, however, such that an extrapolation to the asymptotic
regime of high Rayleigh numbers and high Coriolis numbers has been possible only
with restrictions.

The separate use of poloidal and toroidal power constraints has long been a
desideratum of the upper-bound theory (Busse 1978) and Kerswell & Soward (1996)
have included both constraints in their derivation of an upper bound for the
momentum transport in shear flows. In their case only a non-rotating system has
been considered and the authors conclude that the bound could not be improved
significantly through the use of separate energy balances for poloidal and toroidal
components of the velocity field.

In this paper a bound is derived in which the rotation parameter plays an essential
role. Through the consideration of separate energy balances for poloidal and toroidal
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FiGURE 1. Sketch of the geometrical configuration of the problem.

components of the velocity field the upper bound becomes strongly dependent on the
Coriolis number. This effect is strengthened by the assumption that the extremalizing
vector fields do not depend on the streamwise coordinate of the problem. While
this hypothesis is also made in the case of bounds that depend on a single energy
balance and thus become independent of the Coriolis number, it is contradicted by
experimental evidence for very low rotation rates. No such contradiction is known
or expected for sufficiently high values of the rotation parameter, however. Hence we
believe that the bound is correct for higher values of the Coriolis number as we shall
argue in §§3, 4 and 5 of this paper.

In the following we start with the formulation of the mathematical problem for
the case of plane Couette flow in a rotating system. Such a situation can be realized
experimentally, for instance, in the narrow fluid gap between two cylinders rotating
at nearly the same rate about their common axis when the inner cylinder is rotating
slightly faster. Even the case when the cylinders are in addition moving relative to
each other in the axial direction is included in our formulation. After energy stability
and linear stability have been reviewed in § 3, we turn to the derivation of the upper
bound for the momentum transport in §4. A discussion of the results and their
implications will be given in §5.

2. Mathematical formulation of the problem

We consider simple shear flows in a fluid system rotating with the constant angular
velocity £p about an axis fixed in space. The fluid is regarded as incompressible
with a constant kinematic viscosity v. It is bounded by two infinitely extended rigid
walls which are parallel to each other as well as to £ and which are moving with
the constant velocity Up relative to each other as indicated in figure 1. Using the
distance d between the walls as length scale and d°/v as time scale we can write the
Navier—Stokes equation for the velocity vector ¥ in the form

dV+ DV +1jx b+t xD=—-Vn+ VD, (2.1a)
Vv =0, (2.1b)



Bounds on momentum transport 305

where i, j and k form a right-handed system of orthogonal unit vectors with i in the
direction of Up and k normal to the walls. Accordingly ¥ must satisfy the boundary
condition

b =TFiRe/2 at z==1. (2.2)
Here the Reynolds number Re and the two Coriolis numbers, T and 7, have been
introduced,

Uold — __2@p-jd* ,_22pid’

Re = , (2.3)
v v v

Throughout this paper T > 0 will be assumed while the sign of £ may be arbitrary. A
system of coordinates x, y, z parallel to i, j and k will be used. By taking the average
over the x, y-dependence of equation (2.1a), which will be indicated by an overline,
we obtain the following equation for the mean flow, U = b:

—3,U + 32U = 3.(v.v,d + v,v,j) (2.4)

where v =19 — U has been introduced. Since U - k =0 the Coriolis force does not enter
this equation and is balanced entirely by the z-component of the pressure gradient.
We now introduce as our definition of turbulence under stationary conditions that
averaged quantities are time independent. This definition allows us to integrate
immediately equation (2.4),

0.U = (v.vei + vv,j) — (v.v,d + v,0,j) — Rel, (2.5)

where the angular brackets indicate the average over the fluid layer and where the
constant of integration has been determined such that the boundary conditions (2.2)
are satisfied.

It is convenient to introduce the general representation for the solenoidal velocity
field v with vanishing x, y-average,

v=Vx (VO x k) + V& x k = §& + ¥, (2.6)

where the conditions @ = ¥ = 0 can be imposed without losing generality. By taking
the z-components of the (curl)? and of the curl of equation (2.1a) two equations for
@ and ¥ are obtained:

VAL ® — (Tj + %) VAW =8 (v:Vv)+ (3, + U-V)V?A, & —U" VA, @, (27a)
VAW 4+ (1j +1i) VAP =5+ (v- Vo) 4+ (8, + U-V)A W —U' - nA, P, (2.7b)

where A, denotes the two-dimensional Laplacian, A, = 92,492, and U'(U") indicates
the first (second) derivative of U with respect to z.

After multiplying equations (2.7a) and (2.7b) by & and ¥, respectively, and
averaging the results over the fluid layer, as indicated by the angular brackets,
we obtain the following energy balances for the poloidal and toroidal components of
the velocity field:

(k x VV?@|?) 4+ (A ®(Tj + ti)- VW)

+ (80 - [(80@ 4+ W) -VInW) = (A, @ U'- Vo, @), (2.8q)
(k x VVW2) — (A, ®(Tj + ti)- VW)

— (80 [(8® + W) -VIg¥) = —(W U’ - A, D), (2.8b)
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where the boundary conditions
®=09P=¥=0 at z==4} (2.9)
have been used in the partial integrations. When both expressions (2.8) are added the
well-known energy balance for the fluctuating component of the velocity is obtained,
(k x VV2@|*) + (|k x VV¥|?) — (MA@ U+ (V20.® + %)) = 0, (2.10)

where the abbreviation V, = V — kk-V has been introduced. After insertion of
expression (2.5) the relationship

(IVaV2 @) + (VoYW ) + ([w(V20.D + &) — (w(V20.® + @) )

=Re(w (7@ +0,¥)) (2.11)

is obtained where the abbreviation w =—A,® and the identity (f(f — (/) ={|f —
(f)]?) for any function f(z) have been used.

3. Results of energy and linear stability analysis

Before starting the derivation of upper bounds for the turbulent momentum
transport based on equation (2.11) we should recall the analysis leading to the
energy stability Reynolds number Reg and the critical Reynolds number Re, for the
problem described by (2.1) and (2.2). Since Uy = —iRez is the basic solution of the
problem we obtain for any perturbation ¥ = ¥ — U, the equations

3+ () —iRez) Vo —b-kiRe+1j x v + ti x b = —Vi + V¥, (3.1a)
V-1 =0. (3.1b)
After multiplication of (3.1a) by ¥ and averaging it over the fluid layer the Reynolds—

Orr energy equation,
1d
2 dt
is obtained. The energy Reynolds number Reg, which guaranties that for Re < Reg
any finite-amplitude disturbance v decays exponentially, is determined as the minimum
of the variational functional

(18°) = —(|V9[*) + Re(0.1.), (32)

(IVu?) = 27V - u)
<uxuz>
among all vector fields # that satisfy the boundary condition u = 0 at z = 1/2
and (u,u.) > 0; 7 is the Lagrange multiplying function which takes into account the
constraint V-u =0. The Euler-Lagrange equations for a stationary value P of the

functional (3.3) are given by
—(iu, + ku,)P/2 = —Vit + Vu, (3.4a)
V-u=0. (3.4b)
Anticipating that the solution of these equations that minimizes P depends only on
y and z we take the x-component of the curl of (3.4a),

OP/2 = V*y, (3.5)

where we have introduced u,=9.¥(y, z), u,=—09,¥(y,z) and 6(y,z) = dyu,. The
y-derivative of the x-component of (3.4a) yields

Iy P/2=V. (3.6)

Re(u) = (33)
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The solutions of (3.5) and (3.6) together with the boundary conditions
Yy=0y=0=0 at z=+1 (3.7)

are identical to those for the onset of convection in a Rayleigh-Bénard layer. We thus
obtain as minimum value of P

P?/4=1708 or Rep =2+/1708. (3.8)

Here 1708 denotes the well-known value of the critical Rayleigh number
(Chandrasekhar 1961) of convection in the presence of no-slip boundaries. For the
proof that x-independent solutions of equations (3.4) do indeed provide the minimum
value of P see Busse (1972).

It turns out that the linear analysis of the stability of the basic solution Uy = —i Rez
with respect to infinitesimal disturbances ¥ yields a critical value Re, of the Reynolds
number which coincides with Rey for the special rotation rate T = /1708, which can
be easily seen when the stability equations

3,9 —iRez Vo —v-kiRe+71j X ¥+ 1i x b = —Vit + V*, (3.9a)
V-5 =0, (3.9b)

are considered. Anticipating that the lowest value of Re corresponding to non-
decaying solutions of these equations is given by x-independent steady solutions we
take the x-component of the curl of (3.9a) and the y-derivative of the x-component
of (3.9a),

6 = V4, (3.10a)
(Re — )3,y = V°0, (3.10b)

where ¥, = 3,%(y, z), I. = —3,¥(y, z) and 8(y, z) = ,¥, have been used. Again, the
solutions of (3.10) together with the boundary conditions

Y=0y=0=0 at z=+1 (3.11)

are identical to those for the onset of convection in a Rayleigh-Bénard layer. We thus
obtain as minimum value for 7(Re — 1)

t(Re—1) = 1708, vyielding Re. = 1708/7 + 1. (3.12)

As a function of t, Re. reaches its minimum value for tz = /1708 at which point it
coincides with Rep according to relationship (3.8). For this reason the x-independent
steady disturbances do indeed correspond to Re., at least at t =1z, as we had
anticipated. Experimental observations also indicate that relationship (3.12) is
generally valid. For small values of 7, as Re, tends to infinity, finite-amplitude
x-dependent disturbances are observed, at least in the case £ =0, just as in non-
rotating plane Couette flow. Neither theoretical results nor experimental evidence
(for a recent review of theoretical and experimental results for the Taylor—Couette
problem refer to Dubrulle et al. 2005) however, seem to contradict the validity of the
relationship

Rep = 1708/t +7 for t© 2 +/1708. (3.13)

A rigorous mathematical proof of this relationship for values other than 7 = 7 is not
available, unfortunately. Kaiser & von Wahl (1996) have shown that x-independent
disturbances of arbitrary amplitude must decay for Re <1708/t + 7, but this is far
from establishing hypothesis (3.13). As has already been shown by Busse (1970b) the
results of this section hold for arbitrary values of 7.
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4. Upper bound on the momentum transport in turbulent Couette flow

The momentum transport across the fluid layer in the x-direction is given by
M = Re + {v.v,) according to equation (2.5). Since according to (2.11), {(v.v,) = 0,
an upper bound on this quantity is of primary interest. Instead of looking for an
upper bound u on the quantity (v,v,) at a given value Re of the Reynolds number,
however, we shall look for a lower bound R on Re at a given value u of the turbulent
contribution to the momentum transport, since both quantities are monotonically
related as can be verified from the results. As in earlier work (Busse 1970a) we are
thus led to the formulation of the variational problem:

Find the minimum R(w, t) of the functional

(IVaV2@|2) 4+ ([VoVY %) M ([w(V20.D + q¥) — (w(V20,® + n¥))|*)
(w(92® +0,9)) (w(32® +0,¥))

RDP, Y, 1, T)

(4.1)

among all fields ®(w=—A,®) and ¥ that satisfy the boundary conditions (2.9),
condition (2.8a) and the condition (w(d2,® + 3,¥)) > 0.

In considering this variational problem we anticipate that the term
(lw(@2,® —08,¥) — (w(d;,® — 8,¥))|*) vanishes for the minimizing field since it
contributes only a positive term in the functional (4.1). It thus will be dropped in the
following. Adopting the ideas expressed in the preceding section we further introduce
the hypothesis that for moderate and large positive values of T the minimizing fields
@ and ¥ do not depend on the coordinate x. In this case the functional and the
side constraint (2.8a) simplify significantly. We use the new variable ® = 9,¥ and
introduce the side constraint (2.8a) with the Lagrange multiplier 4 into the functional,
which thus assumes the form

_ (IVaVPeP)(1 + ) + (VO ]?) (lwo — (wo)*)
R(P, W, u,T) = we) — AT+ we)? .

(4.2)

Since, except for the positive numerator of the first term on the right-hand side of
(4.2), the functional does not change when @ and @ are multiplied by § and §,
respectively, the numerator may be minimized with respect to the arbitrary factor 8
with the result

2/([VaV2@P)(1 + 2)([VO ) — At (we) n (w6 — (wo)P)

RO, P, u,T) = (o) M (we)?

(4.3)

The best bound is obtained when the minimum R as a function of the parameter A
reaches a maximum. This motivates us to search for the extremum of the functional
(4.3) as a function of A. This procedure yields the maximizing value of A

(IV.V2 @) (Ve l’)

1=
2H{wE)?

1. (4.4)

The introduction of this expression into the functional (4.3) yields

(D, W, 1, T) = (IV2V2@?) (VO P’) +T+M<IW—<w@>lz>_

T{(w®O)2 (45)
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Since T is a given positive parameter we shall consider instead of the variational
functional (4.1) the closely related functional

- . _ (V2o PN(VeP) | . (wo — (wo)P)

RD,0,)=(RD, Y, u,T)—T)T= (wO)? + i (W) , (4.6)
where the definition i = tu has been introduced. In the following we take advantage
of the fact that the functional # no longer depends on t explicitly. In fact this
functional is identical to the one the minimum of which provides a lower bound for
the Rayleigh number at a given value i of the convective heat transport in a fluid
layer heated from below (Howard 1963; Busse 1969). The Euler-Lagrange equations
for a stationary value of the functional (4.6) cannot be solved exactly, but approximate
solutions based on hierarchies of N boundary layers have been described by Busse
(1969). Solutions of the form

N N
o= oM =3 g/, ©=60"=3 4,00 (4.7)
n=1 n=1

have been obtained with the functions ¢,(y) satisfying
O n(y) = —apdu(y).  (Idu(3)*) = 1. (4.8)

For these multi-a-solutions asymptotic expressions for the minimum of the functional
(4.6),

RM() = (3 x 4V — )@Y — 1)bip¥/e=4" (4.9)
have been derived where b; is given by

1—4-N)

b;;(3747'v) — 4N (g /B)} (ﬂ43/4)4( (1—4"M)2, (4.10)

Here o and § are constants of the order unity which are given in Busse (1969). The
absolute minimum Re of the functional # defined by

R(p) = min RY(2) (4.11)

is given with increasing 1 by R™)(f1) with N being all positive integers starting with
N =1.

5. Discussion

Although a firm proof is lacking for the hypothesis that x-dependent trial fields
@, ¥ do not lead to lower values of the functional (4.1) at a given value of u for
T 2 /1708, we believe that the result

Re > R(p, 7) = min{R(®, ¥, u, 1)} =7 + min{,@(q), O, ut)}/t (5.1)

for any deviation from the basic solution Uy = —iRez of rotating plane Couette flow
is correct for v = /1708. Since the minimum of @(@, O, ut) for u = 0 is given
by 1708, the result (5.1) coincides with the relationship (3.12) for the critical value
of the Reynolds number in the limit u — 0. Relationship (5.1) is more general, of
course, since it provides the upper bound for the momentum transport for values
Re > 7 4+ 1708/7, which is implied by the results (4.9), (4.11). In the limit of large
values of Re, Re > t = /1708, the bound on the momentum transport assumes the
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form (see, for instance, equation (4.2) of Busse 1969)
1= (vv,) < ((Re—1)r'3/10.114) . (5.2)

It is noteworthy that a similar upper bound for the momentum transport can be
obtained if the functional

(4820 /d:)(d0/dzP) |, (6 — (w6)P)

2, 0.) = (w6)? (we)?

(5.3)

is considered instead of QA?(CD, ©®, ut), as has been done by Howard (1963). The
functional (5.3) arises in the theory of upper bounds on the convective heat transport
in the case when the equation of continuity is dropped as a constraint on the trial
fields. Evidently R(D, O, 1) < ._@A?(qﬁ, ®, nt) holds and the Euler—Lagrange equations
for the purely z-dependent trial fields @, ® can be solved analytically in terms of
complete elliptic integrals as demonstrated by Howard (1963). In the present context
the asymptotic bound for the momentum transport u = fi/t is of interest and is
given by

= (v,) < ((Re—1)(37)"3/4) 2. (5.4)
While this upper bound exceeds the upper bound (5.2) as it must, the power-law
dependence on (Re — 7)r'/3 remains the same.

One of the most fascinating aspects of the theory of upper bounds is the similarity
between properties of the experimentally observed turbulence and of the extremalizing
vector fields (Busse 1969, 1970a, 2002). Here we restrict attention to the mean flow
profile that results from the momentum transport of the extremalizing vector fields.
Ignoring the boundary layers we find that the mean interior shear is described by

do,
dz

w® — (w®) — R

;(z(a)lél — 1)/t —(R+7%)/7 (5.5)

= (RM(p) — @ = pip2/=* 1) jr — (R™M(R) + %) /7
=—1— RM()/(3 x4V —1)

where we have used expressions (3.30) and (3.33) of Busse (1969). Since the last
term in these equations becomes negligible in the limit of large &t we find the result
that dU,/dz approaches —t for large wut, i.e. the mean flow profile becomes that of
a curl-free potential vortex. The realization of linear mean flow profiles with nearly
vanishing absolute vorticity is a well-known phenomenon of experiments on turbulent
shear flows in rotating systems as demonstrated, for example, by Johnston, Halleen &
Lezius (1972). The analogy between the curl-free mean flow profile and that of the
isothermal mean temperature in a turbulent convection layer on which relationship
(5.5) is based has also been emphasized in the discussion of the numerical simulations
of Tanaka et al. (2000).

In conclusion we state as the main results of the present paper that considerable
evidence exists that for = /1708 no stationary turbulent states of motion exist
within the regime —Rer < Re < 1708/t + t and that for values of Re exceeding the
right-hand side of this inequality the momentum transport is bounded by relationship
(5.2).
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